

# Distances between subspaces

Jackson Van Dyke

October 12 and 14, 2020

I originally gave this talk in Professor Yen-Hsi Tsai's course "Mathematics in Deep Learning" (M393) at UT Austin in Fall 2020.  
It is based off of [\*this talk\*](#), by Professor Lek-Heng Lim.

# Motivation

- Start with  $k$  objects (images, text, etc.) with  $N$  features.
- I.e. a collection of  $k$  vectors of dimension  $N$ .

## Example

If we start with  $k$  images, we can split it into  $p$  squares and take the grayscale values to get  $k$  vectors in  $\mathbb{R}^p$ .

- Then we turn these vectors into some kind of subspace. The three types we will consider are:
  - linear subspaces (vector subspaces),
  - affine subspaces (shifted vector subspaces),
  - ellipsoids (higher-dimensional ellipses).
- Before doing anything else with these subspaces, we want to develop some notion of distance between them.

# Table of contents

## 1 Linear subspaces

- Same dimension
- Different dimensions

## 2 Affine subspaces

- Same dimension
- Different dimensions

## 3 Ellipsoids

- Same dimension
- Different dimensions

# Review: linear subspaces

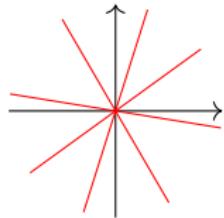
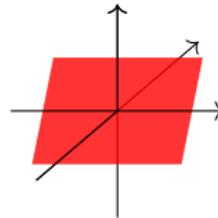
- Consider the real vector space  $\mathbb{R}^N$ .
- A **linear subspace of  $\mathbb{R}^N$**  is a subset which is also a vector space.
- In particular, it **contains 0**.

## Example

Linear subspaces of  $\mathbb{R}^2$  are lines **through the origin**.

## Example

The 2-dimensional linear subspaces of  $\mathbb{R}^3$  are planes **through the origin**.



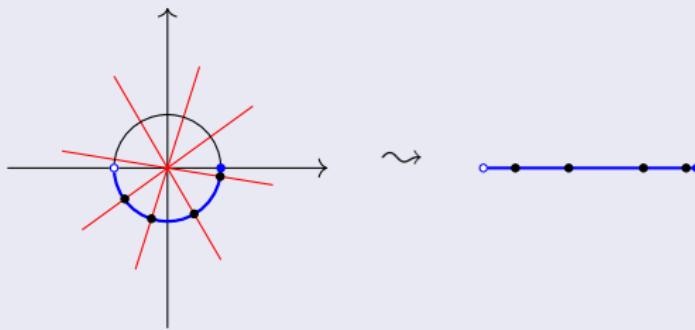
# Distance

## Question

What is the distance between two linear subspaces?

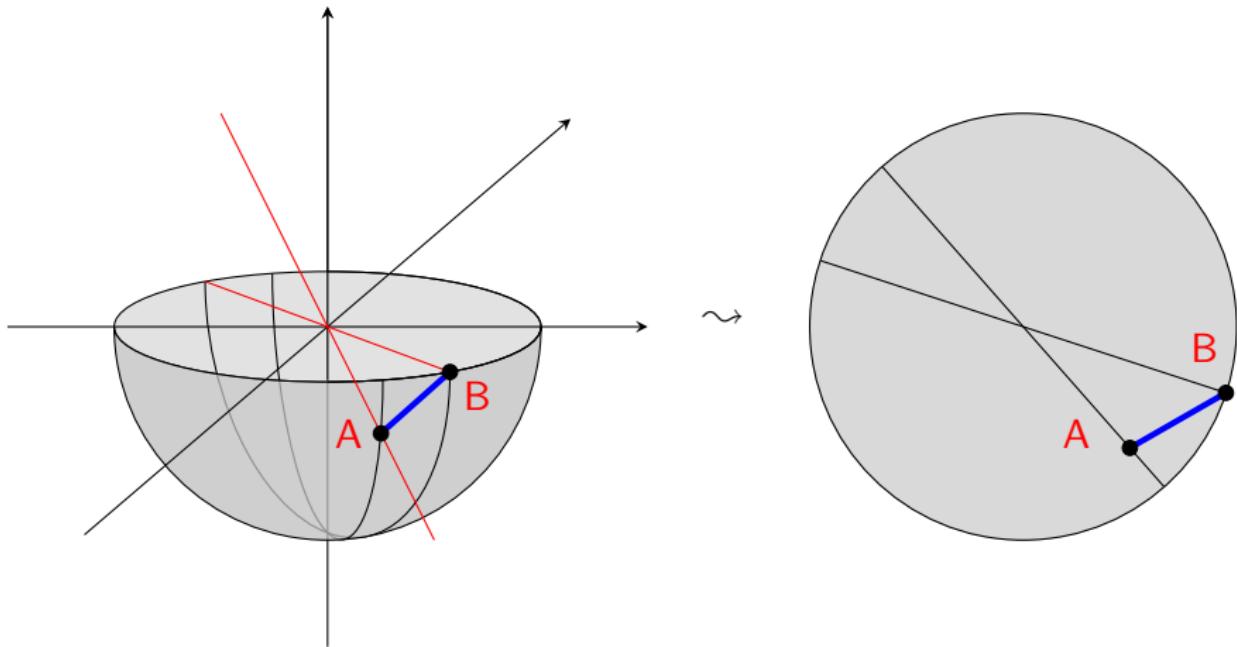
## Example

For lines in  $\mathbb{R}^2$ , we just need to take the angle.



So now we want to formalize this in high dimensions.

# Higher-dimensional picture



distance  $(A, B)$  = blue.

## Higher-dimensional setup

Let  $a_1, \dots, a_k \in \mathbb{R}^N$  and  $b_1, \dots, b_k \in \mathbb{R}^N$  be (separately) linearly independent sets of vectors. Write their spans as:

$$A := \text{Span} \{a_1, \dots, a_k\} \subset \mathbb{R}^N \quad B := \text{Span} \{b_1, \dots, b_k\} \subset \mathbb{R}^N.$$

Since the vectors were linearly independent,  $A$  and  $B$  are both  $k$ -dimensional linear subspaces of  $\mathbb{R}^N$ .

Therefore  $A$  and  $B$  are points of the **Grassmannian**.

$$A, B \in \text{Gr}(k, N) := \left\{ k - \text{dim'l linear subspaces of } \mathbb{R}^N \right\}.$$

# Principal vectors and angles

- Write  $\hat{a}_1 \in A$  and  $\hat{b}_1 \in B$  for the vectors which

maximize

$$a^T b$$

such that

$$\|a\| = \|b\| = 1$$

for  $a \in A, b \in B$ .

- Write  $\hat{a}_2 \in A$  and  $\hat{b}_2 \in B$  for the vectors which

maximize

$$a^T b$$

such that

$$\|a\| = \|b\| = 1$$

$$a^T \hat{a}_1 = 0, \quad b^T \hat{b}_1 = 0$$

for  $a \in A$  and  $b \in B$ .

- In general we ask for  $\hat{a}_j$  (resp.  $\hat{b}_j$ ) to be orthogonal to  $\hat{a}_i$  (resp.  $\hat{b}_i$ ) for all  $i < j$ .

# Grassmann distance

- **Summary of principal vectors:**  $\hat{a}_1$  and  $\hat{b}_1$  are unit vectors which have minimal angle between them. The vectors  $\hat{a}_i$  and  $\hat{b}_i$  are defined the same way, except you insist that they are orthogonal to the previously chosen vectors.
- We can think of the principal vectors as forming a basis which is convenient for measuring angles.
- Define the **principal angles**  $\theta_j$  by

$$\cos \theta_j = \hat{a}_j^T \hat{b}_j .$$

Note that  $\theta_1 \leq \dots \leq \theta_k$ .

- The **Grassmann distance** between the linear subspaces  $A$  and  $B$  is given by:

$$d_k (A, B) = \left( \sum_{i=1}^k \theta_i^2 \right)^{1/2} .$$

# Metric?

We have been using the word “distance” a bit loosely.

Technically,  $d$  defines a **metric** on  $\text{Gr}(k, N)$  because it satisfies:

- ①  $d(A, B) = 0$  if and only if  $A = B$ ,
- ②  $d(A, B) = d(B, A)$ , and
- ③  $d(A, C) \leq d(A, B) + d(B, C)$

for all  $A$ ,  $B$ , and  $C \in \text{Gr}(k, N)$ .

# Computing principal angles

- For any orthonormal basis of  $A$  (resp.  $B$ ) we can store the vectors as columns, to represent  $A$  as a matrix  $M_A$  (resp.  $M_B$ ).
- Then we can compute the singular value decomposition (SVD):

$$M_A^T M_B = U \Sigma V^T$$

where

$$\Sigma = \begin{pmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_k \end{pmatrix}.$$

- The principal angles then satisfy

$$\cos \theta_i = \sigma_i.$$

- The principal vectors are the columns of:

$$M_A U$$

$$M_B V.$$

## An example

- By separating images into three regions:

2 images of someone's face  $\leadsto v_1, v_2 \in \mathbb{R}^3$

- If  $v_1$  and  $v_2$  are linearly independent, we get a plane:

$$F := \text{Span}(v_1, v_2) = \{m_1 v_1 + m_2 v_2 \mid m_1, m_2 \in \mathbb{R}\} \subset \mathbb{R}^3.$$

- For two new photos of someone, again we get a plane and we can take the distance to  $F$  as a way to compare to the original photos.
- But what if I only have one picture of someone, and I want to compare it to the two I started with?

### Question

How do we compare subspaces of different dimensions?

# Schubert varieties

- For  $k \leq \ell$ , we would like a notion of distance between

$$A \in \mathrm{Gr}(k, N) \quad B \in \mathrm{Gr}(\ell, N) .$$

- Consider the set of  $\ell$ -planes containing  $A$ :

$$\Omega_+(A) := \{P \in \mathrm{Gr}(\ell, N) \mid A \subseteq P\}$$

and the set of all  $k$ -planes containing  $B$ :

$$\Omega_-(B) := \{P \in \mathrm{Gr}(k, N) \mid P \subseteq B\} .$$

These are called **Schubert varieties**. E.g.

$$\Omega_+(\text{the line}) = \{\text{planes containing the line}\}$$

$$\Omega_-(\text{plane}) = \{\text{lines contained in the plane}\} .$$

- Strategy:** measure distance from  $A$  to  $\Omega_-(B)$ , and  $B$  to  $\Omega_+(A)$  and compare.

# Distance between linear subspaces of different dimensions

The distance from  $A$  to  $\Omega_-(B)$  is given by:

$$\delta_- = \min \{d_k(P, A) \mid P \in \Omega_-(B)\} .$$

and the distance from  $B$  to  $\Omega_+(A)$  is given by

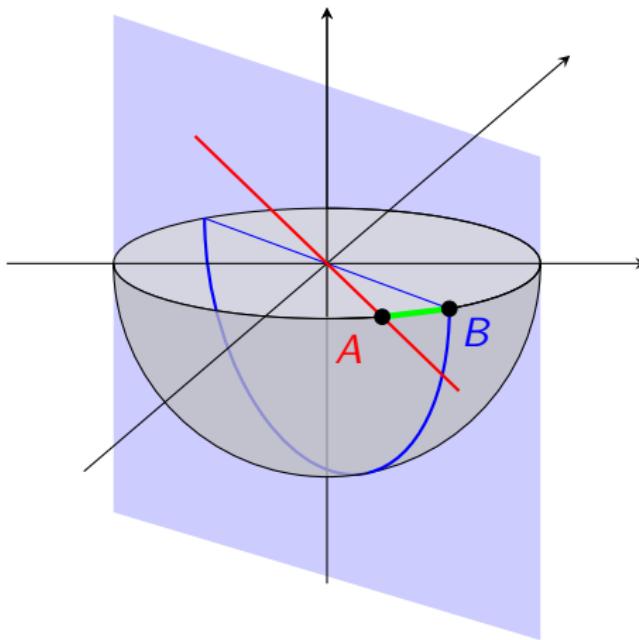
$$\delta_+ = \min \{d_\ell(P, B) \mid P \in \Omega_+(A)\} .$$

Theorem 1 (Ye-Lim 2016 [YL16])

$\delta_+ = \delta_-$ , and the common value is:

$$\delta(A, B) = \left( \sum_{i=1}^{\min(k, \ell)} \theta_i^2 \right)^{1/2} .$$

Now  $A$  is still a line, but  $B$  is a plane, both still in  $\mathbb{R}^3$ .



The distance is the only principal angle that can be defined: the first one.  
So

$$\delta(A, B) = \text{green}.$$

# Metric?

- Recall  $d$  was a metric on  $\text{Gr}(k, N)$ .
- The space of all linear subspaces in all dimensions is the **doubly infinite Grassmannian**:  $\text{Gr}(\infty, \infty) = \sqcup_{k=1}^{\infty} \text{Gr}(k, \infty)$ .

## Question

Does  $\delta$  define a metric on  $\text{Gr}(\infty, \infty)$ ?

**No:** it only satisfies symmetry.

$$\delta(A, B) = 0 \iff A \subseteq B \text{ or } B \subseteq A$$

## Counterexample

Let  $L_1, L_2 \in \text{Gr}(1, N)$ ,  $P \in \text{Gr}(2, N)$  such that  $L_1, L_2 \subset P$ .

**Triangle inequality**  $\implies \delta(L_1, L_2) = \delta(L_1, P) = 0$ . **Contradiction.**

# Premetric.

Instead,  $\delta$  is what is called a **premetric** (or **distance**) on  $\text{Gr}(\infty, \infty)$ , since it satisfies:

- ①  $d(A, B) \geq 0$ ,
- ②  $d(A, A) = 0$ , and
- ③  $d(A, B) = d(B, A)$

for all  $A, B \in \text{Gr}(\infty, \infty)$ .

This can be thought of more as a way to measure *separation*, in the sense of the distance between a point and a set.

## Metric after all?

- Recall we can express  $\delta(A, B) = \left( \sum_{i=1}^{\min(k, \ell)=k} \theta_i^2 \right)^{1/2}$ .
- Instead of stopping at the small dimension ( $k$ ), we can artificially keep going, by defining  $\theta_i = \pi/2$  for  $i \geq k$ .
- Then

$$d_\infty(A, B) = \left( \sum_{i=1}^{\max(k, \ell)=\ell} \theta_i^2 \right)^{1/2} \quad (1)$$

is a **metric** on  $\text{Gr}(\infty, \infty)$ .

- When restricted to  $\text{Gr}(k, \infty)$ , this agrees with  $d_k$ .
- Note that the topology we got from  $\delta$  is not metrizable (in fact it is not even Hausdorff).

## Digression: Schubert varieties

- In algebraic geometry, Schubert varieties primarily act as one of the most important (and well-studied) **singular varieties**.
- Classically, a **variety** is a subspace (of e.g.  $\mathbb{R}^N$ ) defined as the points where some polynomials vanish.

- These can be nice and smooth: e.g.  $y - x^2 = 0$  in  $\mathbb{R}^2$ .



- Or not nice and **singular**: e.g.  $y^3 - x^2 = 0$  in  $\mathbb{R}^2$ .



- So these Schubert varieties are actually the subset where some polynomials vanish inside of some huge  $\mathbb{R}^D$ .

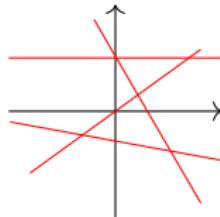
# Affine subspaces

- Let  $A \in \text{Gr}(k, N)$  be a  $k$ -dimensional linear subspace and  $b \in \mathbb{R}^N$  to be thought of as the “shift away” from the origin.
- Write  $\{a_1, \dots, a_k\}$  for some basis of  $A$ .
- The associated **affine subspace** is:

$$A + b := \left\{ m_1 a_1 + \dots + m_k a_k + b \in \mathbb{R}^N \mid \lambda_i \in \mathbb{R} \right\} \subset \mathbb{R}^N.$$

In particular, they don't have to contain the origin.

E.g.  $\text{Graff}(0, N) = \mathbb{R}^N$ , and  $\text{Graff}(1, N) =$



Together, the affine subspaces form the **affine Grassmannian**:

$$\text{Graff}(k, N) = \left\{ k\text{-dim'l affine subspaces of } \mathbb{R}^N \right\}.$$

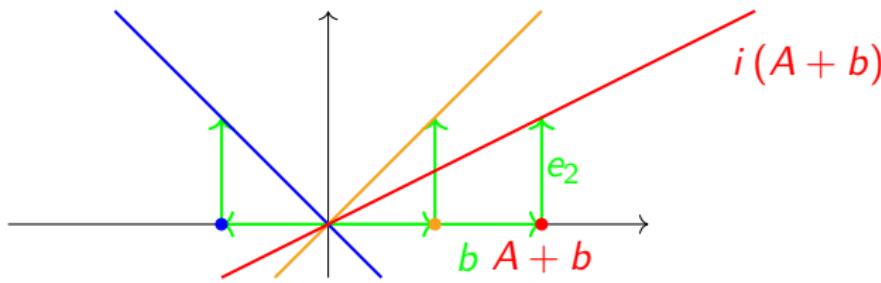
# Embedding Graff in (a bigger) Gr

- **Strategy:** view affine subspaces as linear subspaces of a higher-dimensional space, and take  $d_{\text{Gr}}$ :

$$\text{Graff}(k, N) \xhookrightarrow{i} \text{Gr}(k+1, N+1)$$

$$A + b \longmapsto \text{Span}(A \cup \{b + e_{n+1}\})$$

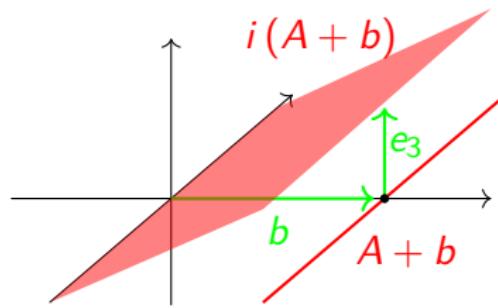
- When  $k = 0$  and  $N = 1$ ,  $i$  sends points of  $\mathbb{R}$  to lines of  $\mathbb{R}^2$ .
- Given a point  $\bullet$ , taking this span is the same as drawing a line from the point a unit distance above  $\bullet$  through the origin.



# Embedding Graff in (a bigger) Gr

$$\text{Graff}(1, 2) \xhookrightarrow{i} \text{Gr}(2, 3)$$

$$A + b \longmapsto \text{Span}(A \cup \{b + e_3\})$$



# A metric on Graff

We use this embedding to define the distance between two affine subspaces:

$$d_{\text{Graff}(k,N)}(A + b, B + c) := d_{\text{Gr}(k+1,N+1)}(i(A + b), i(B + c)) .$$

- $d_{\text{Graff}}$  is a metric because  $d_{\text{Gr}}$  is.
- If  $b = c = 0$ , this is just the usual Grassmannian distance.
- Just as the distance between linear subspaces was calculated using the principal angles, there are **affine principal angles** such that this distance is written as before.
- These angles are also computationally manageable.

## An example

- By separating two images into three regions we get  $v_1, v_2 \in \mathbb{R}^3$ .
- If they are linearly independent, we get a line  $L$  which contains those points:

$$L := \{m_1 v_1 + m_2 v_2 \mid m_1 + m_2 = 1, m_1, m_2 \in \mathbb{R}\} \subset \mathbb{R}^3.$$

This is the **affine span/hull of  $v_1$  and  $v_2$** , following e.g. [SR20].

- The affine hull is the smallest affine subspace containing the data. In particular, it is contained in the linear subspace  $F$  from before.
- For two new photos of someone, again we get a line and we can take the distance to  $L$  to compare to the originals.

### Question

How do we compare subspaces of different dimensions?

# Distance for inequidimensional affine subspaces

For  $k \leq \ell$ , we would like a notion of distance between

$$A + b \in \text{Graff}(k, N) \quad B + c \in \text{Graff}(\ell, N) .$$

As in the linear case, define

$$\begin{aligned}\Omega_+(A + b) &:= \{P + q \in \text{Graff}(\ell, N) \mid A + b \subseteq P + q\} \\ \Omega_-(B + c) &:= \{P + q \in \text{Graff}(k, N) \mid P + q \subseteq B + c\} .\end{aligned}$$

Theorem 2 (Lim-Wong-Ye 2018 [LWY18])

$d_{\text{Graff}(k, N)}(A + b, \Omega_-(B + c)) = d_{\text{Graff}(\ell, N)}(B + c, \Omega_+(A + b))$ , and it is explicitly given via the affine principle angles.

$d_{\text{Graff}}$  is a metric because  $d_{\text{Gr}}$  is.

# Ellipsoids

- $M \in \mathbb{R}^{k \times k}$  is a real symmetric positive definite matrix
  - $\iff$  all eigenvalues of  $M$  are positive,
  - $\iff \forall$  non-zero column vectors  $z$  we have  $z^T M z > 0$ .
- Such a matrix  $M$  determines an **ellipsoid**:

$$E_M := \left\{ x \in \mathbb{R}^k \mid x^T M x \leq 1 \right\} .$$

## Example

If  $M$  is the identity matrix, then this is just the closed ball of dimension  $N$ .

- We will define a distance between  $E_A$  and  $E_B$  by finding one between the matrices  $A$  and  $B$ .

# PDS cone and distance between ellipsoids

$\mathbb{S}_{++}^k$  = the cone of real symmetric positive definite matrices.

**Metric** on  $\mathbb{S}_{++}^k$  given by:

$$\mathbb{S}_{++}^k \times \mathbb{S}_{++}^k \xrightarrow{\delta_2} \mathbb{R}_+$$

$$(A, B) \xrightarrow{\delta_2} \left( \sum_{j=1}^n \log^2 (\lambda_j (A^{-1}B)) \right)^{1/2} .$$

This is a convenient metric because it is very **invariant**. I.e. it satisfies:

$$\delta_2 (XAX^T, XBX^T) = \delta_2 (A, B)$$

$$\delta_2 (XAX^{-1}, XBX^{-1}) = \delta_2 (A, B)$$

$$\delta_2 (A^{-1}, B^{-1}) = \delta_2 (A, B) .$$

$\delta_2$  has applications to computer vision, medical imaging, radar signal processing, statistical inference, and other areas.

## An example

- Assume we are given  $k$  articles written about Halloween, and we count the occurrences of the terms
  - pumpkins,
  - skeletons, and
  - trick-or-treatingto yield  $k$  vectors in  $\mathbb{R}^3$ .
- Write  $E$  for the smallest ellipsoid in  $\mathbb{R}^3$  containing these vectors. If they are linearly independent, it is  $k$ -dimensional.
- For some other collection of  $k$  articles, we can count the same three words and form a second ellipsoid. Then we can measure the distance to  $E$ .
- The inverse of the distance gives the likelihood that the new articles are about Halloween.
- If we wanted to compare fewer than  $k$  articles to the originals, we would have needed to compare  $E$  to an ellipsoid of  $\dim \leq k$ .

# Sub-ellipsoids

- There is a partial order on  $\mathbb{S}_{++}^k$  given by:

$$A \preccurlyeq B \iff B - A \in \mathbb{S}_+^k,$$

where  $\mathbb{S}_+^k$  consists of real symmetric positive semi-definite matrices.

- $A \preccurlyeq B$  iff  $E_B \subseteq E_A$ .
- If I want to compare  $A \in \mathbb{S}_{++}^k$  to  $M \in \mathbb{S}_{++}^\ell$  (for  $k \leq \ell$ ) then I can write

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^T & M_{22} \end{pmatrix}, \quad (2)$$

where  $M_{11}$  is the upper left  $k \times k$  block of  $M$ , and compare  $A$  to  $M_{11}$ .

- We will use this notion of containment to define the analogues of Schubert varieties.

# Analogue of Schubert varieties

For  $k \leq \ell$ , we would like a notion of distance between

$$A \in \mathbb{S}_{++}^k \quad B \in \mathbb{S}_{++}^\ell .$$

Define the convex set of ellipsoids containing/contained in  $E_A/E_B$ :

$$\Omega_+(A) := \left\{ M = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^T & M_{22} \end{pmatrix} \in \mathbb{S}_{++}^\ell \mid M_{11} \preccurlyeq A \right\}$$
$$\Omega_-(B) := \left\{ M \in \mathbb{S}_{++}^k \mid B_{11} \preccurlyeq M \right\}$$

where  $B_{11}$  is the upper left  $k \times k$  block of  $B$ ,  $M_{11}$  is the upper left  $k \times k$  block of  $M$ .

# Distance between inequidimensional ellipsoids

Theorem 3 (Lim-Sepulchre-Ye 2019 [LSY19])

$\delta_2(A, \Omega_-(B)) = \delta_2(B, \Omega_+(A))$ . The common value is

$$\delta_2^+(A, B) = \left( \sum_{j=1}^k \log^2 \lambda_j(A^{-1}B_{11}) \right)^{1/2}$$

where  $k$  is such that

$$\lambda_j(A^{-1}B_{11}) \leq 1$$

for  $j = k + 1, \dots, m$ .

- We are implicitly putting the smaller-dimensional matrix in the first argument of  $\delta_2^+$ ,
- So asking for it to be symmetric does not make sense, i.e. it is not a metric on  $\sqcup_{k=1}^{\infty} \mathbb{S}_{++}^k$ .

# Future directions

- A **category** is (roughly) a collection of objects and arrows between the objects which satisfy some conditions.
- In [DHKK13], the authors define a notion of distance between any two objects of a category.

## Example

The collection of half-dimensional subspaces of a given even-dimensional manifold<sup>a</sup> fit naturally into a category called the **Fukaya category**.

Roughly, we have an object for every subspace, and an arrow whenever they intersect.

---

<sup>a</sup>Technically they're Lagrangians in a symplectic manifold.

## Question

Is this a useful distance for our purposes? Is it computable?

## Summary:

Assume we have a way to pass from raw data to a subspace:

$$\text{raw data} \quad \sim \quad \{v_i\} \in \mathbb{R}^N \quad \sim \quad \text{subspace} \subseteq \mathbb{R}^N$$

When the subspace is linear, affine, or an ellipsoid, there is a metric (or premetric) which on the space of such subspaces (of any dimension!) which is realistic to calculate.

**So we can distinguish data by measuring the distance between the associated subspaces.**

## References

-  George Dimitrov, Fabian Haiden, Ludmil Katzarkov, and Maxim Kontsevich, *Dynamical systems and categories*, 2013.
-  L. Lim, R. Sepulchre, and K. Ye, *Geometric distance between positive definite matrices of different dimensions*, IEEE Transactions on Information Theory **65** (2019), no. 9, 5401–5405.
-  Lek-Heng Lim, Ken Sze-Wai Wong, and Ke Ye, *The grassmannian of affine subspaces*, 2018.
-  K. Sharma and R. Rameshan, *Image set classification using a distance-based kernel over affine grassmann manifold*, IEEE Transactions on Neural Networks and Learning Systems (2020), 1–14.
-  Ke Ye and Lek-Heng Lim, *Schubert varieties and distances between subspaces of different dimensions*, SIAM J. Matrix Anal. Appl. **37** (2016), no. 3, 1176–1197. MR 3543155