

Geometric quantization, fusion categories, and Rozansky–Witten theory

Jackson Van Dyke
TU Munich

July 31, 2024

Projective/anomalous TQFTs

Summary:

- Naturally occurring classical symmetry groups typically act *projectively* on the associated quantized theories.
- In many examples this projectivity can be understood as appearing via the homotopy theory of the higher automorphism group of the quantum theory itself.

Context and motivation

- Projective TQFTS in general are relevant to the classification of topological orders: a gapped quantum system is well-approximated at low energy by a *projective* field theory which is topological [Freed].
- The discussion concerning Rozansky-Witten theory is highly relevant to the B-side (spectral side) of the relative Langlands program [Ben-Zvi-Sakellaridis-Venkatesh].
 - Also see [Teleman] and [Braverman-Dhillon-Finkelberg-Raskin-Travkin-Johnson-Freyd].
 - Relatedly, **RW** is the B-side of 3d mirror symmetry. See e.g. [Raskin-Hilburn, Gammage-Hilburn-Mazel-Gee].

Table of contents

- 1 Quantum mechanics
- 2 Interlude: Families, symmetries, and anomalies
- 3 Fusion categories
- 4 Rozansky-Witten theory

Deformation and geometric quantization

- Classical phase space: symplectic vector space (V, ω) , say over \mathbb{R} .
 - This has a natural group of symmetries $\mathrm{Sp}(V) = \mathrm{Sp}_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:
$$A = T(V) / ([u, v] - \omega(u, v)) = (\mathcal{O}(V), *_\omega) \simeq \mathbb{R} [\underline{x}, \underline{p}] / ([x_i, p_i] - 1)$$
 - The group $\mathrm{Sp}_{2n}(\mathbb{R})$ still acts on A .
- Geometric quantization (states): The Weil representation:

$$\mathcal{H} = L^2(\ell)$$

where we have chosen a polarization $V \simeq \ell \oplus \ell^\vee$.

- The group $\mathrm{Sp}_{2n}(\mathbb{R})$ only acts *projectively* on \mathcal{H} . Equivalently, a central extension, classified by $w_2 \in H^2(B\mathrm{Sp}_{2n}(\mathbb{R}))$, acts linearly on \mathcal{H} :

$$\mathbb{Z}/2 \hookrightarrow \mathrm{Mp} \twoheadrightarrow \mathrm{Sp}_{2n}(\mathbb{R})$$

Table of analogies

$d = 1$ (QM)	(V, ω)	$\mathcal{O}(V), *_\omega$	$L^2(\ell)$	$w_2 \in H^2(B\mathrm{Sp}_{2n}(\mathbb{R}))$
$d = 3$ (TV)				
$d = 3$ (RW)				

Families

Let X be a (π -finite) groupoid (space). Given a field theory F_0 , one can ask if background fields can be inserted, i.e. if there is a family of theories over X with fiber F_0 :

$$\begin{array}{ccc} \mathbf{Bord}_d^X & & \\ \uparrow & \searrow F & \\ \mathbf{Bord}_d & \xrightarrow[F_0]{\quad} & \mathcal{T} \end{array}$$

Two equivalent ways of encoding this notion:

$$\boxed{F: \mathbf{Bord}_d^X \rightarrow \mathcal{T} \quad F: 1 \rightarrow \sigma_X^{d+1}}$$

- Notation: The $(d+1)$ -dimensional gauge theory associated to X as in [\[Freed-Moore-Teleman\]](#) is $\sigma_X^{d+1}: \mathbf{Bord}_{d+1} \rightarrow \mathbf{Alg}(\mathcal{T})$.
- The RHS is an (op)lax natural transformation as in [\[Johnson-Freyd-Scheimbauer\]](#).

Example: $X = BG$

- For G a finite group, families of theories over the groupoid $X = BG$ are equivalent to theories with an action of G .
- For example, fix $d = 1$. Functors

$$F: \mathbf{Bord}_1^{BG} \rightarrow \mathcal{T} = \mathbf{Vect}$$

are classified by functors $BG \rightarrow \mathbf{Vect}$, which are representations of G .

- On the other hand, the theory σ_{BG}^2 is a functor valued in the Morita category of algebras:

$$\mathbf{Bord}_2 \xrightarrow{\sigma_{BG}^2} \mathbf{Alg}$$

$$* \longmapsto (\mathbb{C}[G], *)$$

- A theory defined relative to the theory σ_{BG}^2 is a morphism in the Morita category from \mathbb{C} to the group algebra, i.e. a module over the group algebra.

Anomalies

Let X be a (π -finite) groupoid (space), and now consider *projectivity data on X* :

$$\begin{array}{ccc} B^d \mathbb{C}^\times & \rightarrow & \tilde{X} \\ & \downarrow & \\ & & X \xrightarrow{\alpha} B^{d+1} \mathbb{C}^\times \end{array}$$

Projective/anomalous d -dimensional TQFT with background X -fields:

Theorem (VD23)

TFAE:

$F: 1_X \rightarrow \alpha$	$F: 1 \rightarrow \sigma_{X,c}$
$F: \mathbf{Bord}_d^{\tilde{X}} \rightarrow \mathcal{T}$	$F: 1 \rightarrow \sigma_{\tilde{X}}$

E.g. $X = BG$, $\tilde{X} = B\tilde{G}$ for \tilde{G} a central extension of G classified by α .

projective rep	mod over the twisted gp alg
rep of the ext'n	mod over gp alg of the ext'n

Anomalies

- We will focus on the analogue of a module over the twisted group algebra:

$$\sigma_{X,c}^{d+1} : \mathbf{Bord}_{d+1} \rightarrow \mathbf{Alg}(\mathcal{T}) \quad F : 1 \rightarrow \sigma_{X,c}$$

- Caveat: For some of the examples we will consider, the theory $\sigma_{X,c}^{d+1}$ has not been formally constructed.
- In these cases, one can consider the analogue of a projective representation instead: $1 \rightarrow \alpha$ where everything is rigorous. See [VD23, Hypothesis Q] for more details.

Recasting quantization

- The theory of states defines a 1-dimensional QFT \mathbf{GQ} .
- The classical symmetry group $G = \mathrm{Sp}_{2n}(\mathbb{R})$ acting projectively on \mathcal{H} is equivalent to the theory living relative to twisted G -gauge theory:

$$\begin{array}{ccccc} \mathrm{U}(1) & \rightarrow & \mathrm{U}(\mathcal{H}) & \rightarrow & \mathrm{U}(\mathcal{H}) / \mathrm{U}(1) \\ \uparrow & & \uparrow & & \uparrow \\ \mathbb{Z}/2 & \longrightarrow & \mathrm{Mp} & \longrightarrow & \mathrm{Sp} \end{array}$$

$$\begin{array}{ccc} B \mathrm{Mp} & & \\ \downarrow & & \\ B \mathrm{Sp} & \xrightarrow{w_2} & B^2 \mathbb{Z}/2 \end{array}$$

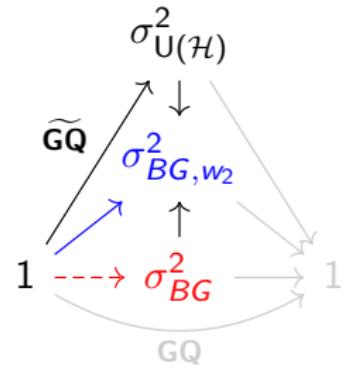
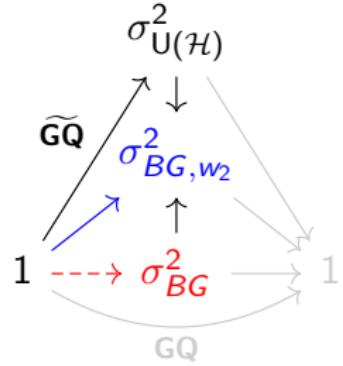


Table of analogies

$d = 1$ (QM)	(V, ω)	$\mathcal{O}(V), *_\omega$	$L^2(\ell)$	$w_2 \in H^2(B\mathrm{Sp}_{2n}(\mathbb{R}))$
$d = 3$ (TV)				
$d = 3$ (RW)				

$$\begin{array}{ccccc} \mathsf{U}(1) & \longrightarrow & \mathsf{U}(\mathcal{H}) & \longrightarrow & \mathsf{U}(\mathcal{H}) / \mathsf{U}(1) \\ \uparrow & & \uparrow & \nearrow & \uparrow \\ \mathbb{Z}/2 & \longrightarrow & \textcolor{blue}{\mathsf{Mp}} & \longrightarrow & \textcolor{red}{\mathsf{Sp}} \end{array}$$

$$\begin{array}{ccc} B\mathrm{Mp} & & \\ \downarrow & & \\ B\mathrm{Sp} & \xrightarrow{w_2} & B^2\mathbb{Z}/2 \end{array}$$



Fusion categorical analogue of deformation quantization

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form $q: \Lambda \rightarrow \mathbb{C}^\times$.
 - Has a natural group of symmetries $O(\Lambda, q)$.
- Analogue of deformation quantization: braided fusion category

$$(\mathbf{Vect}[\Lambda], *, \beta_q) \quad \beta_{\mathbb{C}_\ell, \mathbb{C}_k}: \mathbb{C}_\ell * \mathbb{C}_k \xrightarrow{\langle \ell, k \rangle_q \text{id}} \mathbb{C}_k * \mathbb{C}_\ell .$$

- Retains an action of $O(\Lambda)$.
- Analogue of geometric quantization: fusion category

Vect [L]

where we have chosen $\Lambda \simeq L \oplus L^\vee$ such that $q = \text{ev}$.

- The group $O(\Lambda)$ only acts projectively on **Vect** [L].

The fusion categorical anomaly

Recasting the previous slide in terms of TQFTs:

- There is a (framed, fully-extended) Turaev-Viro theory, which sends the point to $\mathbf{Vect}[L]$, in the Morita 3-category of fusion categories [Douglas-Schommer-Pries-Snyder].
- Using the obstruction theory of [Etingof-Nikschych-Ostrik]:

Theorem (VD23)

The Turaev-Viro theory for $\mathbf{Vect}[L]$ can be upgraded to a theory defined relative to a twisted gauge theory for $O(\Lambda)$:

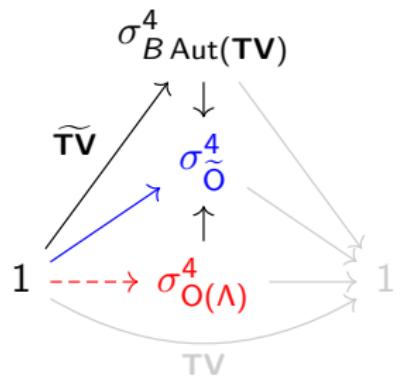
$$\mathbf{TV}: 1 \rightarrow \sigma_B O(\Lambda), c$$

Table of analogies (reprise)

$d = 1$ (QM)	(V, ω)	$\mathcal{O}(V), *_\omega$	$L^2(\ell)$	$w_2 \in H^2(B\mathrm{Sp}_{2n}(\mathbb{R}))$
$d = 3$ (TV)	(Λ, q)	$\mathbf{Vect}[\Lambda], \beta_q$	$\mathbf{Vect}[L]$	$O_4 \in H^4(B\mathrm{O}(\Lambda))$
$d = 3$ (RW)				

$$\begin{array}{ccc}
 B^2\mathbb{C}^\times \rightarrow \mathrm{Aut}(\mathbf{TV}) \rightarrow \pi_{\leq 1} \mathrm{Aut}(\mathbf{TV}) \\
 \parallel \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \text{red dashed} \rightarrow \\
 B^2\mathbb{C}^\times \longrightarrow \widetilde{O} \longrightarrow O(\Lambda)
 \end{array}$$

$$\begin{array}{ccc}
 B\widetilde{O} \\
 \downarrow \\
 B\mathrm{O}(V) \xrightarrow{O_4} B^4\mathbb{C}^\times
 \end{array}$$



Shifted deformation quantization

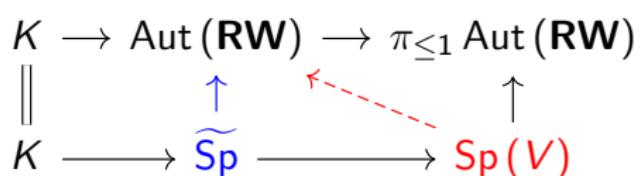
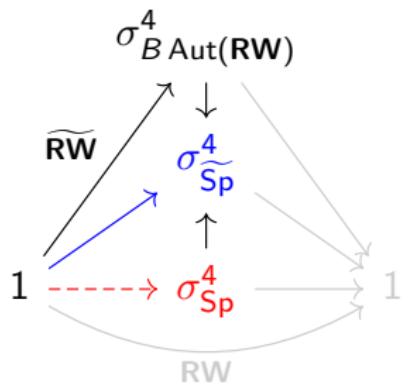
- The classical phase space: 2-shifted symplectic stack (M, ω) as in [\[Calaque, Pantev, Toën, Vaquié, Vezzosi\]](#).
- The deformation quantization can be thought of as a braided deformation of the derived category **QC**(M) of quasi-coherent sheaves.
 - Think: the deformation quantization of k -shifted is an \mathbb{E}_{k+1} -algebra, modules over this form an \mathbb{E}_k -category.
- This will be the assignment of the Rozansky-Witten theory to the circle. [\[Roberts-Willerton\]](#)
 - Compare: The braided fusion category **Vect** [Λ] was assigned to the circle by Turaev-Viro.

Rozansky-Witten theory

- The geometric quantization of a shifted symplectic stack is less well-studied, but a theory is developed in [Safronov].
- The explicit construction of this geometric quantization again typically appeals to a polarization, and therefore has more subtle equivariance properties than the deformation quantization.
- The output should be a certain 2-category, which is closely related to existing constructions of Rozansky-Witten theory. [Rozansky-Witten, Roberts-Willerton, Kapustin-Rozansky-Saulina, Brunner-Carqueville-Fragkos-Roggenkamp, Gammage-Hilburn-Mazel-Gee]
- The theory should fit into the framework of the AKSZ construction. [Alexandrov-Kontsevich-Schwarz-Zaboronsky, Qiu-Zabzine, Scheimbauer-Calaque-Haugseng, Stefanich, Riva]

Table of analogies (reprise²)

$d = 1$ (QM)	(V, ω)	$\mathcal{O}(V), *_\omega$	$L^2(\ell)$	$w_2 \in H^2(B\mathrm{Sp}_{2n}(\mathbb{R}))$
$d = 3$ (TV)	(Λ, q)	$\mathbf{Vect}[\Lambda], \beta_q$	$\mathbf{Vect}[L]$	$O_4 \in H^4(B\mathrm{O}(\Lambda))$
$d = 3$ (RW)	(M, ω)	$\mathbf{QC}(M), \beta_\omega$	$\mathbf{RW}(*)$	$? \in H^4(B\mathrm{Sp}(M))$



My current work in this direction

- The analogue of Crane-Yetter in the **RW** context.
 - One strategy for accessing this projective Sp-action.
- General relationship between the prequantum k -gerbe and the anomaly $(k + 1)$ -gerbe.
 - One strategy for understanding the impact of changing the polarization on the shifted geometric quantization.

Thank you!